




Pagine
Servizi Ricerca, Outreach e Formazione
Area Terza Missione
Sede Napoli
Massimo Cavaliere (Coordinatore dell’Area a.i.)
Sezione Comunicazione, Formazione, Trasferimento Tecnologico e Divulgazione
Alta Formazione e Rapporti con le Università (AFU)
• Gabriella Grossi, Responsabile
• Margherita Groeben
Grant Innovation Office (GIO)
Sede di Napoli
• Giorgio Carpino, Responsabile
• Danilo Cavaliere
• Alberto Corona
• Roberto Firmamento
• Martina Genovese
• Valerio Mattera
• Ornella Papaluca
• Paola Punzo
• Giosuè Zurzolo
Comunicazione istituzionale
Nessuna afferenza
Sezione Strutture Aperte al Pubblico
Rapporti con la Fondazione Dohrn
Sede Napoli - DaDoM
Area Amministrazione Generale
Sede Roma
• Francesca Di Carlo (Coordinatore sede Roma)
Sede Napoli
• Gaetano Aloe
• Valeria Contino
• Chiara Svampa
• Nicola Manco
Servizi Generali
Servizi Amministrativi
Servizi Tecnici
Amministrazione Centrale
Area Amministrazione Generale - Coordinatore ad interim: Direttore Generale
Area Terza Missione - Coordinatore ad interim: Direttore Generale
Fourteenth Ischia Summer School on the History of the Life Sciences
Fourteenth Ischia Summer School - 27 June – 3 July 2015
Geographies of Life
Introduction to the theme
Life’s diversity is today an integral part of the various climates and locales our planet has to offer. Herodotus wrote of the stations of the earth’s life forms, and since Aristotle the sea has also attracted naturalists as a source of wonders that confound land-based classifications. Yet understandings of the spatial distribution of life have changed radically over time. In the ancient world, land and sea formed separate spheres in a structured cosmos of “natural places,” each of which possessed its properly adapted inhabitants. For Aristotle, seals were “monsters,” because they show all the main features of land animals, but live in the wrong place. Living beings could be in the right place or out of place, they could inhabit temperate and marginal (hot or cold) zones, but the patterns were not understood in terms of geographic distribution on a grid of latitude and longitude.
Early modern voyages of exploration added this geographical dimension. Sea and land collapsed into one “terraqueous globe,” and naturalists began to realize that identical climes could harbour very different fauna and flora. At the same time, the concept of species acquired temporal and spatial dimensionality, with species now understood as physical and physiological systems in their own right, rather than forms that matter could take on. Only in the nineteenth century, however, did the spatial distribution of organisms become the subject of a dedicated field of research, biogeography. Alexander von Humboldt’s attempt to derive quantitative biogeographic “laws” led to the realization that the distribution of species did not simply follow the physical environment as it varied with latitude, altitude, and geological conditions, but was the contingent result of migrations, displacements, and hybridisations. Evolutionism, that is, depended not only on the discovery of “deep time” (itself a spatial metaphor), but also on the temporalisation and dynamisation of spatial relations. The consolidation of nation states, as well as colonial and imperial projects, was the political correlate of this development, which was equally visible in the human sciences, with medical topographies feeding into epidemiology, and racial typologies into anthropology and demography.
From the late nineteenth century, when the sea also acquired layers of depth and a detailed topography, an international network of field stations were dedicated, for example, to marine biological and high-altitude research. These institutions facilitated in situ investigations of living organisms and the study of human bodies under extreme conditions. Colonial and imperial surveys, the promotion of agriculture and fisheries by nation states, epidemiology and population genetics, the integration of meteorology and hydrology into climatology, and finally, the use of radioactive isotopes and satellite data in tracking life on a global scale, have turned geographic space into an integral and essential component of contemporary understandings of life on earth. Thus, if the nineteenth century saw the dynamisation of geographic space, the twentieth century saw its experimentalisation, the turning of landscapes into ‘labscapes’, as Robert Kohler called them.
Historians have studied the geographic dimension of the life sciences from a diversity of perspectives, though usually with a focus on particular fields: natural history in the context of exploration and empire, biogeography, oceanography, ecology, epidemiology, demography and medical geography. This summer school adds perspectives from the spatial turn in the history of science, medicine and technology, including studies of transregional and global exchange networks, which have often taken inspiration from imperial studies, oceanic histories, and world history. It also takes account of spatially organized inscription devices, including the lists, catalogues, maps, statistical records, and databases that can synoptically present data gathered from various places.
It was timely to explore the changing relationship between humans and the spatially organized environment also because, confronted by problems of disease control, food security, conservation biology, and climate change, the biosciences themselves increasingly study life as a complex, spatially distributed phenomenon, be it on the micro-scale of biofilms and gut floras, or the macro-scale of the biosphere. This may represent a reawakening after a period when molecular biology dominated, or developments of research programmes that were always alternatives to the molecular paradigm, or the opening up of new spaces for research by the very molecularization of life. At the same time, human geographers had turned their attention to the life sciences as a phenomenon to be addressed with their own tools. Though such concepts as Friedrich Ratzel’s Lebensraum have a long (and problematic) history, geographers had recently begun to study the production of biological knowledge in its own right. Often taking spatial metaphors in the life sciences as a starting point – “boundary,” with its prominent place in immunology, is a telling example – they were exploring the co-production of spatial relations through interactions between humans, both experts and laypeople, and other organisms. The summer school on “Geographies of Life” thus addressed a subject of urgent relevance to the evolving relations of humans with our natural and social environments, and added historical depth to attempts to understand the roles of the life sciences in changing those relations.
1st International Summer School on Marine Ecotoxicology (SSME1)
The first International Summer School on Marine ecotoxicology, SSME1, is organized by the Stazione Zoologica Anton Dohrn under the patronage of Ordine Nazionale dei Biologi and will take place in July 2019 from the 1st to the 5th.
SSME1 will provide an advanced training on different classes of traditional and emerging marine pollutants and how biological systems respond to and are affected by these contaminants at all biological levels.
The participants will focus on:
- Marine chemical stressors: metals, antifoulants, nanomaterials, plastics
- Climate changes: global warming, ocean acidification
- Marine natural toxins
- Marine model organisms in ecotoxicology
- Biomarkers and bioindicators in marine environmental monitoring
- Reprotoxicology
- Case studies
- Ecotoxicity tests
The program consists of lectures and practical sessions held by internationally recognized experts and researchers in the field. Practical session will include innovative and standardized toxicity tests for the assessment of ecotoxicological effects in different marine organisms.
This course will allow the participants to acquire methods and approaches for the detection and assessment of the impact of environmental stressors on marine biota.
SSME1 is open to 20 people with basic knowledge in ecotoxicology
The registration fee is 300,00€ (three hundreds/00), which includes documentation, coffee and lunches, but it does not include accommodation.
The Ordine Nazionale dei Biologi (ONB) supports SSME1 with funds to cover the fee for thirteen participants and provides a certificate worth ECM credits (continued medical education) to all participants.
Summer School “Protein Evolution”
Protein Evolution: from Environmental Adaptations to Biotechnological Applications
A Summer School on “Protein Evolution” will be held at the Stazione Zoologica Anton Dohrn in Naples on July 24 - 26. The Program will include lectures on theoretical aspects of molecular evolution, sequence data manipulation and alignment, protein structure, molecular modelling, and docking analysis. Lectures will be integrated with practical tutorials; and participants are encouraged to work on their own laptop. The number of participants will be limited to 22, and admission is on a first come, first served basis.
Bandi di concorso - FAQ
Quesito 1 - Per il calcolo del IF della rivista va considerato quello attuale, quello degli ultimi 5 anni o quello dell'anno relativo all'anno della pubblicazione?
Risposta 1 - Per IF della rivista si intende quello attuale
Quesito 2 - Cosa si intende per IF totale? è la somma degli IF delle singole riviste su cui sono state prodotte pubblicazioni?
Risposta 2 - Per IF totale si intende la somma di tutti gli IF delle singole riviste su cui sono stati pubblicati i singoli articoli ISI
Quesito 3 - Nell'ambito della produttività scientifica normalizzata (Nr. di pubblicazioni ISI / Nr. anni di produttività scientifica), per "Nr. anni di produttività scientifica" si intende il numero di anni dalla prima pubblicazione o il numero di anni dalla data di conseguimento del dottorato?
Risposta 3 - Per “nr. anni di produttività scientifica”, si intende il numero di anni dalla prima pubblicazione scientifica se il candidato ha iniziato a pubblicare prima del conseguimento del dottorato, altrimenti si considera l’anno di conseguimento del dottorato.
Quesito 4 - Cosa si intende per PhD equivalent?
Risposta 4 - per “PhD equivalent” si intende qualunque titolo, anche conseguito all’estero, che attesti la comprovata esperienza, almeno triennale, certificata da una istituzione di ricerca nel settore di pertinenza del bando di interesse. L’equivalenza si ritiene automatica per il personale già in servizio presso enti pubblici di ricerca o università come ricercatore o professore (con qualifica pari o superiore al III livello/fascia) da almeno tre anni
Quesito 5: In questo momento non ho una affiliazione a una istituzione scientifica per cui mi trovo impossibilitato ad accedere alla pagina web WOS, per cui mi è impossibile trovare l'accession code per le pubblicazioni incluse nel Web of Science Core Collection. Cosa posso fare?
RISPOSTA 5: In questo caso, sarà sufficiente caricare un file excel con la lista delle pubblicazioni indicizzate con indicato, per ciascuna, il DOI (Digital Object Identifier).
Mission/interessi scientifici
La missione del Dipartimento di Biotechnologie Marine è di condurre e promuovere ricerche scientifiche riguardanti le possibili applicazioni dei prodotti naturali marini nei settori biomedico e ambientale.
Ci concentriamo principalmente sui prodotti microalgali e sull'ottimizzazione della produzione di composti bioattivi modificando i parametri di crescita come la qualità della luce e la concentrazione di sostanze nutritive. Siamo interessati alla caratterizzazione dell'attività biologica di estratti, frazioni e composti puri isolati da microalghe e altri organismi marini attraverso piattaforme di screening avanzate che consentono la previsione del tipo di attività farmacologica, nutraceutica e cosmeceutica dei composti.
Ci concentriamo anche sull'isolamento e la caratterizzazione di microrganismi marini, compresi batteri e funghi, che sono in grado di resistere e degradare inquinanti come metalli pesanti e idrocarburi policiclici aromatici. Gli studi di bioremediation e bioaugmentation mirano a convalidare nuove tecnologie per il recupero delle aree costiere inquinate marine. Sono in fase di sviluppo approcci nuovi e innovativi per il ripristino di tali siti mediante l'utilizzo di fanerogame marine e coralli.
La nostra esperienza multidisciplinare comprende campi come ecologia, ecologia chimica, fisiologia, genomica e trascrittomica, chimica e biochimica e biologia cellulare che guidano il trasferimento di tecnologia e conoscenza per applicazioni industriali di prodotti naturali marini.
Le piattaforme disponibili includono:
• Piattaforma BlueBiomass per l'isolamento e la manutenzione e la coltivazione di massa di microalghe e altri organismi marini per potenziali applicazioni biotecnologiche.
• Piattaforma BlueBioChem per l'estrazione e il frazionamento di organismi marini bioattivi
• Piattaforma BlueOmics per studi di gene mining per la ricerca di nuovi enzimi e percorsi biosintetici
• Piattaforma BlueCell per testare l'attività biologica di estratti, frazioni e composti puri su specie di modelli marini e linee cellulari umane.
• Piattaforma BlueMicrobe per testare l'attività antibatterica degli organismi marini.
• Piattaforma BlueEnvironment per il biorisanamento e il ripristino di siti marini inquinati